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Abstract
We have used a high-resolution back-focal-plane detector to make simultaneous
measurements of the axial and lateral force constants of a micron-sized particle
in a single-beam optical gradient trap. We measure the optical force applied to
the trapped particle as a function of the relative index of refraction of particle
and medium, the radius of the particle, and the laser beam power. Results are
compared with recent theoretical predictions.

1. Introduction

In 1986 Ashkin and co-workers [1] reported the first experimental demonstration of the
three-dimensional trapping of a dielectric particle using the radiation pressure from a single,
highly focused laser beam. Since then, the single-beam gradient trap (or ‘optical tweezer’
as it has become known) has become an indispensable tool in biology, chemistry, and
colloid physics [2–5] for manipulating single colloidal spheres or cellular organelles such
as chloroplasts [6] and nuclei within cells. Trapping techniques have also been extended
to encompass macromolecules by tethering large biopolymers such as λ-DNA or protein
molecules between the surfaces of two dielectric spheres, and then moving the two spheres
using optical forces. Although optical tweezers were used, at first, only to fix or manipulate
the positions of particles, in the last few years optical traps have been developed as highly
sensitive force transducers [2, 7, 8]. The three-dimensional trapping potential generated by
a tightly focused laser beam is, for small particle displacements from the centre of the trap,
approximately harmonic in nature. So the force acting on a particle may be determined from
the displacement of the trapped particle from its resting position in the trap. Several laser
interferometric and photodiode position detection techniques have been developed [7–10]
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which yield the position of the trapped particle with nanometre resolution at high speeds (104–
105 s−1) and allow the quantitative measurement of piconewton or even femtonewton forces.
Applications include force generation by single-molecular motors [2, 3],mechanical properties
of biopolymers such as DNA [11], titin [12], membranes [13], colloidal interactions [5], and
measurement of thermal forces to probe the microscopic rheology of materials [14].

Most optical tweezer applications have, apart from a few studies [10, 15], exploited only
one or two dimensions of the optical trap. Forces have been determined either along one axis or
in a 2D plane perpendicular to the propagation of light. However, to measure molecular forces
and positions in space precisely it is essential to be able to measure the magnitude of forces in all
three dimensions. 3D force measurements could allow, for instance, the direct characterization
of force generation processes occurring within the interior of a live cell or the tracking of
diffusion in highly anisotropic materials. However, the problem has been the lack, until
recently, of a technique to determine simultaneously both the axial and lateral displacement
of a trapped particle. The earliest position detectors relied on either interference between
two circularly polarized light beams [16], a photodiode placed behind the condenser [15], or
measurement of the two-photon fluorescence emission intensity [17] to measure displacement
along a single axis. Simultaneous two-dimensional particle tracking was achieved first by
placing a quadrant photodetector in the back-focal plane (BFP) of a condenser lens [7, 9].
This high-resolution position sensor exploits the interference between the unscattered trapping
laser beam and light scattered by the trapped particle [9] to provide lateral displacements with
nanometre scale sensitivity at bandwidths of up to 100 kHz. Recently, however, in an important
development Pralle et al [10] demonstrated that a BFP detector could also yield information
about the axial position of the trapped sphere. The quadrant photodiode provides three signals.
Difference signals from the upper and lower or right and left sets of quadrants provide two
lateral coordinates while a sum signal derived from all four quadrants yields the axial (z-)
coordinate. In this paper we use BFP interferometry to track the three-dimensional thermal
position fluctuations of an optically trapped particle. Analysis yields the axial (kz) and lateral
(kr ) force constants which characterize the three-dimensional force distribution of a single-
beam trap. In an extensive set of measurements we characterize the variation of the axial
and lateral trapping forces with the particle radius, the relative index of refraction, and the
laser power. We compare our experimental measurements with the predictions of a recent
theory of optical forces developed by Tlusty et al [18]. We find near quantitative agreement
between theory and experiment. Our results should aid the development of three-dimensional
force measurements. Such methods will be a basic requirement for future single-molecule
investigation within living cells.

2. Optical forces

A stable single-beam optical trap is generated by bringing a Gaussian TEM00 laser beam of
wavelength λ to a near-diffraction-limited focal spot with a large numerical aperture (NA)
microscope objective. The radiation forces exerted on a dielectric sphere of radius a can be
resolved into two components: a scattering force directed along the direction of the incident
light beam and a gradient force which acts as a restoring force directed towards the beam centre
in the case where the index of refraction of the particle np exceeds that of the medium nm. The
rigorous calculation of the magnitude of the scattering and gradient forces acting on a non-
adsorbing sphere is a challenging problem in optics. One needs to solve the Maxwell equations
for the electromagnetic field with the appropriate boundary conditions, and then integrate the
corresponding Maxwell stress tensor over the surface of the sphere accounting for the highly
inhomogeneous electric field generated by tightly focusing a Gaussian beam. The majority of
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theoretical calculations to date remain valid strictly only for either very small spheres (dipolar
or Rayleigh regime where a � λ) or very large spheres (geometric optics regime where
a � λ). For particles much smaller than the laser wavelength λ, the instantaneous electric
field across the particle is uniform and the particle may be treated as a simple induced point
dipole [1, 19]. In the geometric limit, where the particle size is large compared to λ, the
momentum exchange between the laser beam and particle is calculated from the vector sum of
the forces from the refraction and reflection of single plane waves that comprise the beam [20].
However, in the intermediate-size regime (a ≈ λ), where most trapping experiments are
performed, the predictions of both theories are in qualitative disagreement with experiment [3].
At intermediate sizes diffraction effects are significant and a strongly focused beam must be
represented by a large number of Fourier components and then each plane-wave component
further expanded in a series of Mie partial waves [21]. This procedure although exact does not
yield closed analytic expressions and is consequently difficult to compare with experiment.
While considerable effort has gone into predicting optical forces, the agreement between theory
and experiment still remains unsatisfactory. Indeed even the parametric trends predicted have
not been rigorously tested.

In general, the strength of trapping forces depends both on the geometry of the applied
optical field and on the properties of the particle and the surrounding medium. Here we
focus only on particle properties, in particular the relative index of refraction m = np/nm,
and the radius a of the trapping particle. The two limiting theoretical treatments predict very
different dependences for variations in these parameters. For small particles where the dipolar
approximation is valid, the scattering force is proportional to the scattering cross-section [19]
and so increases as the square of the polarizability:

�Fscat(�r) = 8πnm

3c
(ka)4a2

(
m2 − 1

m2 + 2

)2

I (�r)ẑ, (1)

where ẑ is the unit vector in the propagation direction, k = 2π/λ is the wavenumber in the
medium, and I (�r ) is the intensity profile. In the limit where m − 1 � 1 the scattering force
scales as ∼(np − nm)2a6. In contrast, the gradient force is linear in the polarizability [19]:

�Fgrad(�r) = 2πnm

c
a3

(
m2 − 1

m2 + 2

)
�∇ I (�r ), (2)

and so scales as ∼(np − nm)a3 in the limit of small refractive index difference. To model the
beam intensity we assume a paraxial Gaussian beam. At a distance z from the focus and a
radial distance r from the beam axis (in cylindrical coordinates) the beam intensity is

I (�r ) = 2P

πω(z)2
exp

[ −2r2

ω(z)2

]
(3)

where

ω(z)2 = ω2
0

[
1 +

(
z

z0

)2]
, (4)

z0 = πω2
0/λ, ω0 is the radius of the beam waist in the focal plane,and P is the beam power [19].

The accuracy of the paraxial approximation is dependent on the parameter s = λ/2πω0. For
the situation relevant here, where s ∼ 0.2 (see section 4), Barton and Alexander [22] estimate
that the average error in the electric field using the paraxial approximation is <10%. We expect
our calculations of the radiation forces to have a comparable level of uncertainty. In the lateral
direction, gradient forces only contribute to the optical potential so the radial trap stiffness
kr = −∂(�x · �Fgrad)/∂x evaluated at the beam focus is, from equations (2)–(4),

kr = 32P

3ω4
0c

a3(np − nm), (5)
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Figure 1. A schematic diagram of the single-beam optical trap and BFP quadrant photodetector.

(This figure is in colour only in the electronic version)

in the limit where m − 1 � 1. Stable axial trapping requires the gradient forces to exceed the
scattering forces. Assuming �Fgrad · �z � �Fscat, the axial stiffness kz = −∂(�z · �Fgrad)/∂z in the
dipolar regime is, approximately,

kz = 64P

3k2ω6
0c

a3(np − nm). (6)

We note that the ratio of the axial and lateral trap stiffness, kz/kr , is independent of
polarizability and is predicted to be a function only of the optical geometry, kz/kr = 2/(k2ω2

0).
In comparison, there are few quantitative predictions for the trap strengths in the geometric
optics regime, where λ � a. Ashkin [20] has shown that the maximal trapping forces increase
initially with a rise in the relative refractive index m. However, at high index, scattering
forces increase disproportionately in comparison to the gradient forces and the trap becomes
ultimately unstable. Since in the geometric optics regime the maximum trapping forces are size
independent [23], spring constants are expected to scale inversely with the particle radius a.

3. Materials and methods

3.1. Experimental setup

Figure 1 shows a schematic diagram of the optical tweezer configuration used in this work. The
single-beam trap is built around a conventional inverted microscope (Axiovert S100, Zeiss). A
diode-pumped Nd-YAG laser (7910-Y4-106, Spectra Physics) with a vacuum wavelength (λ0)
of 1064 nm was used as a light source. The optical trap was produced by focusing the laser in
the focal plane with a high-NA (1.3 NA) oil-immersion 100× objective lens (Plan-Neofluar,
Zeiss). Transmitted and forward-scattered light was collected by a high-NA oil-immersion
condenser lens and the image of the BFP projected onto a quadrant photodetector (QD50-
3T, Centronic) via a dichroic mirror. Custom-built analogue circuitry was used to generate
difference and sum signals proportional to the x-, y-, and z-positions of the trapped particle.
The apparatus was mounted on a vibration-free table.
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3.2. Particles

Poly(methyl methacrylate) (PMMA) microspheres were synthesized [24] as test particles.
The particles were stabilized against aggregation by a thin layer of a covalently attached
comb copolymer of poly(12-hydroxystearic acid) (PHSA) and PMMA. Particle radii were
determined using a combination of static and dynamic light scattering and transmission electron
microscopy measurements and are accurate to within 2%. The refractive index of the PMMA
spheres was estimated to be 1.484 at a wavelength of 1064 nm from the dispersion relation,
determined by fitted literature data for PMMA microspheres [25]:

n2
p − 1 = Ap

1 − (λp/λ)2
, (7)

where Ap = 1.1899 and λp = 104.4 nm. The refractive index mismatch �n = np − nm

between particles and medium was varied by suspending the microspheres in a mixture of
cyclohexane (n1064 = 1.4184, density 0.779 g cm−3) and cis-decalin (n1064 = 1.4701, density
0.893 g cm−3). The index of refraction of the solvent mixture was calculated assuming ideal
mixing. While the particles are too large for the dipole theory to be valid, for all particle/solvent
combinations studied the shift in the phase of light travelling though the particle is sufficiently
small, 2ka(m −1) � 1, that scattering from the particles is described accurately by Rayleigh–
Gans theory [26] and there is no need for a Mie analysis. The viscosity of the solvent mixture
was determined at 25 ◦C from capillary viscometry measurements. The values measured were
numerically fitted to the expression η(mPa s) = 0.436 + 0.489 exp(1.658w), where w is the
mass fraction of cis-decalin in the mixture. The suspensions of particles (volume fraction,
φ ∼ 7 × 10−5) were loaded into thin, rectangular glass capillaries (Vitro Dynamics Inc.) with
an internal dimension of 100 µm. The addition of 0.05% PHSA–PMMA copolymer to the
suspension media prevented the spheres from sticking to the glass walls of the sample cell.

3.3. Measurement of beam waist

The radius w0 of the laser beam (the distance in the focal plane at which the intensity has
dropped by a factor of 1/ exp(2)) is an important parameter in the specification of the trapping
geometry. To determine w0 we scanned a PMMA sphere (radius a = 0.652 µm) firmly
attached to a glass slide back and forth within the focal plane using a piezoelectric stage
(P-517 2CL, Physik Instrumente) whilst recording the x- and y-signals from the detector.
The detector response was averaged over 100 cycles of a 1 µm sine wave and fitted to the
theoretical model proposed by Pralle et al [10] to yield values for the beam waist radius w0

and the x- and y-voltage sensitivities, Cx and Cy (defined by the linear relationship between
voltage and displacement, V = Cx x etc). The detector response was found to be linear in
particle displacement in an interval of ∼200 nm around the trap centre. The beam waist was
determined as 0.78 ± 0.1 µm. While the beam waist w0 did not vary significantly between
different runs, we observed much larger variations in the calibration factors which we attributed
to slight changes in the exact axial position of the immobilized particle. As a consequence, we
did not in general use this technique to calibrate the voltage response of the quadrant detectors.

3.4. Measurement of spring constants

The three-dimensional force distribution was determined from the thermal fluctuations in
position of a trapped particle. Before measurement, the particle was moved at least 20µm above
the cover slip to minimize hydrodynamic coupling to boundaries. Under these conditions,
hydrodynamic corrections to the Stokes’s formula for the viscous drag ξ = 6πηa on the
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Figure 2. Three-dimensional force calibration. (a) and (b): one-dimensional potentials (in units of
kB T ) determined from Boltzmann statistics for particle motion in the axial and lateral directions,
respectively. Solid curves were obtained by fitting data (see the text) to a harmonic potential,
expression (8). The corresponding axial and lateral force constants were kz = 2.1 × 10−7 N m−1

and kr = 3.81 × 10−6 N m−1. (c) and (d): time evolution of the mean squared displacement
in the axial and lateral dimensions, respectively. The theoretical curves (solid) were calculated
from equation (11) using kz = 2.0 × 10−7 N m−1 and kr = 3.80 × 10−6 N m−1. Note the close
agreement between the two calibration methods.

particle are less than 2% [27] and were ignored. The laser power was monitored before the
beam entered the microscope and corrected to give the power P at the focal region using the
transmission of 59% reported by Svoboda and Block [3] for the same microscope objective.
The intensity changes at the quadrant photodetector were recorded at 223 time intervals with
a sampling rate of 20 kHz (PCI-MIO-16E-4 analogue-to-digital board, National Instruments)
and stored on a personal computer for subsequent analysis. The x-, y-, and z-amplitudes of the
fluctuations were calculated by subtraction of a mean offset voltage followed by multiplication
by the detector sensitivity.

The harmonic nature of the trapping potential was checked by calculating the equilibrium
probability p(l) dl of finding the particle between l and l + dl (where l = x, y, or z). The
probability distribution function p(l) was normalized by its maximum value. From the
Boltzmann law the corresponding potential experienced by the particle is equal to V (l) =
−kB T ln p(l), where the normalization chosen ensures the potential offset is zero. Curves (a)
and (b) in figure 2 show the potential distributions in the axial and lateral directions measured
for a 0.643 µm particle trapped in cyclohexane at room temperature (298 K). Temperature
effects caused by irradiation with a focused laser beam have been reported to be less than a
few kelvins [28], and were consequently neglected in our analysis. The lateral x-potential
was accurately fitted by a quadratic potential with a force constant kr = 3.81 × 10−6 N m−1

confirming the harmonic nature of the force distribution for small displacement from the trap
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centre. The measured y-potential was also harmonic (data not shown) with a force constant
which differed by less than 3% from that in the x-direction. In contrast, the axial probability
distribution was clearly asymmetric. We were unable to accurately reproduce the derived axial
potential with a quadratic function alone. The solid curve in figure 2(a) shows a fit to the
function

V (z) = 1
2 (kzz2 + Fzz) (8)

with an axial force constant kz = 2.1 × 10−7 N m−1 and a linear coefficient Fz = 4.1 ± 0.7 fN
(average of five measurements). The presence of this small linear term in the axial potential
may be accounted for by a consideration of the gravitational force on the suspended particle.
The gravitational minus the buoyant force on the particle is

Fg = 4π

3
(ρp − ρm)a3g (9)

where ρp and ρm are the densities of the particle and medium respectively and g is the
gravitational acceleration. This axial force acts in opposition to the optical gradient forces
and shifts the minimum of the axial potential vertically downwards and with it the position of
the experimentally defined z = 0 level. Allowing for this shift, it is straightforward to show
that the resulting axial potential should be of the form (8) with Fz = Fg . The measured density
of the PMMA spheres (ρp = 1.166 g cm−3) gives Fg = 4.2 fN, in close agreement to the value
measured (4.1 ± 0.7 fN), confirming the origin of the asymmetry seen.

Although the equilibrium Boltzmann analysis confirmed the harmonic nature of the
trapping potential, the force constants are more conveniently determined experimentally from
a thermal analysis. The dynamics of the trapped particle can be modelled by the Brownian
motion of a particle of mass m moving in a three-dimensional ellipsoidal harmonic potential,
with axial and radial force constants kz and kr , respectively. Particle motion is driven by
collisions with molecules of the solvent and damped by the viscosity of the medium. The
averaged x-motion of the trapped sphere is, for instance, described by the differential equation

mẍ + ξ ẋ + kr x = (2ξkB T )1/2δ(t) (10)

where the drag coefficient ξ is, for a sphere far from a surface, 6πηa. This equation is readily
solved using Laplace transform techniques. At times long compared to the characteristic times
for the momentum relaxation τB = m/ξ , the mean squared displacement is given by

〈�x2(t)〉 = 2kB T

kr
[1 − e−kr t/ξ ]. (11)

To determine the harmonic force constants, the time dependence of the mean squared x , y and
z detector signals was evaluated using fast Fourier transform techniques. Since the detector
signal is proportional to particle position, the calculated time-dependent voltage fluctuations
were fitted to expression (11) to yield the trap stiffness and detector sensitivity. The viscous drag
term was calculated from experimental estimates for the viscosity of the trapping medium and
the particle radius. Curves (c) and (d) in figure 2 show examples of measured axial and lateral
mean squared displacements and their accurate representation by (11). The spring constants
found are in good agreement with the values determined from the Boltzmann analysis. Thermal
analysis is more convenient experimentally since in contrast to the Boltzmann method it does
not require an additional determination of the detector calibration. Accordingly, thermal
analysis was used for the remainder of this work.

4. Results and discussion

We have determined the three-dimensional nature of the optical gradient forces on poly(methyl
methacrylate) spheres as a function of the relative index of refraction m and particle radius.
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Figure 3. Linear dependence of lateral (a) and axial force constants (b) as a function of laser beam
power for 0.643 µm radius PMMA particles suspended in cyclohexane.

The majority of our detailed measurements were made on 0.643 µm radius spheres. First we
checked that the trap stiffness varied linearly with the power of the trapping beam. The values
of the lateral and axial spring constants are plotted in figure 3 as a function of the estimated laser
power in the focal plane. Measurements were made on particles (radius 0.643 µm) suspended
in cyclohexane (m = 1.0461). The trap stiffness plotted at each power is an average of
at least three individual measurements. The measured spring constants are clearly directly
proportional to the laser power, as expected from trapping theory.

To investigate the dependence of the stiffness on the relative index of refraction we repeated
the above measurements on particles suspended in differing proportions of cyclohexane and
cis-decalin. Seven solvent mixtures were used, with compositions which varied from 100%
cyclohexane to 98% (by mass) cis-decalin. In this way the relative index of refraction at
λ0 = 1064 nm was varied between 1.0101 � m � 1.0461 (0.0148 � �n � 0.0654).
The viscosity of the mixed solvents was estimated from capillary viscometry measurements
and was in the range 0.93 � η � 2.92 mPa s. In each mixture, we measured the axial
and lateral force constants for five different laser powers between 8 and 16 mW. The linear
dependence of the optical spring constants on laser intensity was checked. Any recorded values
which deviated significantly from a linear fit were repeated. The gradient k/P was extracted
from a least-squares fit and is plotted in figure 4 as a function of the refractive index of the
medium nm, for both the axial and lateral directions. The measured axial and lateral force
constants increase linearly with the refractive index mismatch �n, as expected from the dipole
approximation (equations (5) and (6)), confirming the dominance of the gradient forces in the
creation of a stable optical trap. The solid lines in figure 4 depict linear fits which extrapolate
to zero axial and lateral trap strengths at a medium refractive index nm of 1.485 ± 0.001, in
excellent agreement with the refractive index estimated for PMMA spheres at 1064 nm of
np = 1.484. Although the dipole approximation is not expected to be valid for the particle
sizes considered here, it is informative to make a quantitative comparison between the current
data and its predictions. From figure 4 the gradient P−1 dk/dnm is −6.4 ± 0.4 × 10−3 and
−4.4 ± 0.2 × 10−4 N m−1 W−1 for the lateral and axial dependence, respectively. The values
calculated from equations (5) and (6) are factors of 3–4 times larger than the values measured
and reveal the inadequacy of the dipole approximation for spheres with a ∼ λ.
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least-squares fits. 0.643 µm radius PMMA particles were suspended in mixtures of cyclohexane
and cis-decalin to vary nm and the laser powers ranged from 8 to 16 mW.

The optical gradient forces for intermediate-sized particles have been modelled recently
by Tlusty et al [18]. They argue that the dominant contribution to trapping forces is the
rapid variation of the beam intensity around the trapped particle and not interference effects.
Ignoring phase factors, they treat the particle as a collection of dipoles and using a simple
Gaussian model derive closed expressions for the force–displacement curve. Differentiation
yields an analytic expression for the lateral force constant:

kr/P = k0ac erf

(
ac√

2

)
erf

(
ac√
2ε

)
e−(1/2)a2

c , (12)

where the particle is approximated by a cube of the same volume2. Here ac = 2a
ω0

( π
6 )1/3,

the eccentricity ε defines the dimension of the beam waist in the axial direction [18], and the
prefactor k0 is chosen such that, in the limit where m − 1 � 1 and a � ω0, equation (12)
reduces to the Rayleigh result (equation (5)). This gives k0 = 4(np − nm)ε/cω0. In the
geometric optic limit (a � ω0) equation (12) has an incorrect limit, kp decaying as e−a2

c /2

rather than as 1/ac as expected, but the differences are probably not significant for the particle
sizes considered here. Applying expression (12), using the experimentally determined values
for the Gaussian beam waist (ω0 = 0.78 µm) and particle size, gives a value for the lateral
gradient P−1 dk/dnm as −8 × 10−3 N m−1 W−1 which is quite similar to the value measured
(−6.4±0.4×10−3 N m−1 W−1). The eccentricity ε was estimated from the paraxial Gaussian
model (3) as ε = 8.2. The closeness of this agreement, with no adjustable parameters
besides ω0 and ε, is very encouraging and suggests that the Tlusty model provides an accurate
description of trapping forces for these particle sizes.

Further discrepancies with the predictions of a dipole model are revealed by the dependence
of the trap strength on the particle radius. Particles of six different radii ranging from 424 to
921 nm were studied. Lateral force constants were determined at four different laser beam
powers between 9 and 25 mW. Dispersions were studied in cyclohexane only. The values of the
power-normalized trap stiffness kr/P are plotted in figure 5. kr/P increases at first, reaching
a broad maximum where a ∼ 500 nm, before finally decreasing with increasing radius. A
2 We have used the approximate expressions for the trapping force (equations (4) and (5) of [18]) rather than the
analytic expression given for the trap stiffness (equation (8)) which seems to have a typographical error.
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Figure 5. Power-normalized lateral force constant kr /P as a function of particle radius. The
theoretical curve (dashed curve) was obtained from a least-squares regression fit to expression (12),
adjusting the prefactor k0 and beam waist ω0, and using ε = 8.2. The fitted parameters were
k0 = 8 × 10−3 N m−1 W−1 and ω0 = 0.6 µm.

similar dependence has been reported by Simmons et al [8] who rationalized the non-monotonic
behaviour as reflecting the transition between the a3-increase predicted by dipole theory and
the a−1-decrease expected from geometric optics. The dashed curve in figure 5 depicts a least-
squares fit to the Tlusty predictions (12), varying both the beam waist ω0 and the prefactor k0

to allow for small systematic uncertainties in the data. Again agreement is very reasonable
considering the rather limited number of radii studied and confirms the accuracy of the Tlusty
model. In general we find that the discrepancies between experiment and the Tlusty model
are of order 20–30%, which may perhaps be fortuitous given the strong dependence of the
lateral force constants on ω4

0. Although the fitted values for ω0 and k0 differ from experimental
estimates, the discrepancies are relatively small. For instance, the fitted values for ω0 = 0.6 µm
and k0 of 8 × 10−3 N m−1 W−1 are to be compared with experimental estimates of 0.78 µm
and 9 × 10−3 N m−1 W−1, respectively.

Finally, the mechanism of the BFP detection technique used here to track the position of
the trapped particle depends on a far-field interference between the incident laser beam and
the light scattered by the trapped particle [9]. The momentum transferred from the light beam
to the particle in this process is the physical origin of the radiation forces which are exploited
in an optical trap. The common underlying mechanism implies a link between trapping forces
and detector response. During the course of our measurements we noticed that laser intensity,
refractive index, and particle radius had very similar effects on the detector sensitivity to
the changes seen in the force constants and discussed above. In figure 6 the experimentally
determined detector sensitivity is plotted as a function of the force constant, for both the lateral
and axial directions. The data were collected from measurements made on 0.643 µm particles
under a wide variety of laser powers and refractive index differences. It is clear that detector
sensitivity and the optical spring constant are linearly related with a constant of proportionality
which does not vary with either particle polarizability or beam intensity. Consequently, the
BFP signal is best interpreted not as revealing particle position but as tracking directly the time-
dependent optical force applied to the particle. The linear relationship between sensitivity and
trapping forces is implicit in the model of the BFP detector described by Gittes and Schmidt [9].
From their analysis it is straightforward to show that the lateral sensitivity Cr has the form
Cr = (βkcω0/

√
π)kr , where β is the detector voltage generated for a unit-power incident

beam. For the current set-up, the output voltage was measured as ∼83 V W−1 laser power at
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Figure 6. Quadrant detector sensitivity for particle displacement along (a) the lateral and (b)
the axial axis as a function of the trap force constant measured under identical conditions. The
experimental data were collected at four laser intensities and in at least five different solvent
mixtures. The dashed line depicts the best-fit linear relationship.

the detector, implying a lateral force sensitivity Cr/kr ∼ 9 × 1010 V N−1. This value is in
close agreement with the gradient of the line plotted in figure 6(a) (Cr/kr ∼ 7 × 1010 V N−1)
and confirms that the BFP interferometry signal records directly the force exerted on a particle
trapped in a beam, rather than its position.

5. Conclusions

We have used BFP interferometry to measure the polarizability and size dependences of the
axial and lateral trapping forces on a particle in a single-beam optical gradient trap. Although
many papers have been published reporting the measurements of trapping forces, there have
been few systematic studies of the effect of particle properties on trap efficiency. Here, in
contrast to the majority of experiments detailed in the literature (which use micron-sized
polystyrene or silica spheres in water), the maximum phase shift k(m − 1)2a produced by the
particles studied is always smaller than unity. In consequence, the particles are best described
by Rayleigh–Gans theory (equivalent to the first Born approximation where the scattering
from each volume element within a particle differ only in phase not amplitude [26]), rather
than requiring a more sophisticated and complex Mie analysis. The scattered amplitude in
the Rayleigh–Gans approximation is found by multiplying the amplitude found from a point
dipole (Rayleigh) model by an angle-dependent function R(�) which is unity for forward
scattering. The validity of the Rayleigh–Gans approximation considerably simplifies the
theoretical calculation of trapping forces [29].

We show experimentally that the strengths of the axial and lateral trapping forces are
both linear in the particle polarizability. This observation confirms that in a stable optical
trap the gradient force dominates the scattering force, which scales quadratically with the
polarizability. Furthermore, we find that the lateral trap stiffness is strongly particle size
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dependent. The trapping forces increase with particle radius, reaching a maximum at a radius
a ∼ 500 nm, before decreasing with further increases in size. We compare the results of
our experiments with a recent theoretical model introduced by Tlusty et al [18]. This simple
model emphasizes the strong localization of the optical field near the focus of a beam and
calculates the radiation forces on a trapped particle using a point dipole approximation in
which each volume element is assumed to scatter independently of its neighbours (equivalent
to the Rayleigh–Gans model with R(�) = 1). Using parameters derived from experiment,
we find near quantitative agreement between this model and our experiments. The model
evidently describes accurately the physical factors which govern lateral trapping, at least for
the intermediate-sized particles studied in this work (a ∼ λ). Finally, we confirm that a BFP
detector tracks quantitatively the actual forces applied to a trapped particle.
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